This model is also known as the irreversible isomerization reaction set (Gillespie 1977). It consists of a single species and single reaction channels,
X --c--> 0
Define parameters
library(GillespieSSA2)
sim_name <- "Radioactive Decay model"
params <- c(k = 0.5)
final_time <- 20
initial_state <- c(N = 1000)
Define reactions
Run simulations with the Exact method
set.seed(1)
out <- ssa(
initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_exact(),
sim_name = sim_name
)
plot_ssa(out)
## Loading required namespace: ggplot2
Run simulations with the Explict tau-leap method
set.seed(1)
out <- ssa(
initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_etl(tau = .003),
sim_name = sim_name
)
plot_ssa(out)
Run simulations with the Binomial tau-leap method
set.seed(1)
out <- ssa(
initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_btl(),
sim_name = sim_name
)
plot_ssa(out)
References
Gillespie, Daniel T. 1977. “Exact Stochastic Simulation of Coupled
Chemical Reactions.” The Journal of Physical Chemistry
81 (25): 2340–61. https://doi.org/10.1021/j100540a008.