The Linear Chain System (Cao, Li, and Petzold 2004) consists of M chain reactions with M+1 species as follows:
S_1 --c1--> S_2
S_2 --c2--> S_3
...
S_M --cM--> S_(M+1)
Define parameters
library(GillespieSSA2)
sim_name <- "Linear Chain System"
M <- 50
params <- c(c = 1)
final_time <- 5
initial_state <- c(1000, rep(0, M))
names(initial_state) <- paste0("x", seq_len(M+1))
Define the reactions
reactions <- lapply(
seq_len(M),
function(i) {
effect <- c(-1, 1)
names(effect) <- paste0("x", c(i, i + 1))
reaction(paste0("c * x", i), effect)
}
)
Run simulations with the Exact method
set.seed(1)
out <- ssa(
initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_exact(),
sim_name = sim_name
)
plot_ssa(out)
## Loading required namespace: ggplot2
Run simulations with the Explict tau-leap method
set.seed(1)
out <- ssa(
initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_etl(tau = .1),
sim_name = sim_name
)
plot_ssa(out)
Run simulations with the Binomial tau-leap method
set.seed(1)
out <- ssa(
initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_btl(mean_firings = 50),
sim_name = sim_name
)
plot_ssa(out)
References
Cao, Yang, Hong Li, and Linda Petzold. 2004. “Efficient
Formulation of the Stochastic Simulation Algorithm for Chemically
Reacting Systems.” The Journal of Chemical Physics 121
(9): 4059–67. https://doi.org/10.1063/1.1778376.