reduce_dimensionality performs an eigenanalysis of the given dissimilarity matrix
and returns coordinates of the samples represented in an ndim-dimensional space.
Usage
reduce_dimensionality(
  x,
  dist = c("spearman", "pearson", "euclidean", "cosine", "manhattan"),
  ndim = 3,
  num_landmarks = 1000
)Arguments
- x
 a numeric matrix
- dist
 the distance metric to be used; can be any of the metrics listed in
dynutils::calculate_distance().- ndim
 the maximum dimension of the space which the data are to be represented in; must be in 1, 2, ..., n-1.
- num_landmarks
 the number of landmarks to be selected.
Examples
## Generate an example dataset
dataset <- generate_dataset(num_genes = 200, num_samples = 400, num_groups = 4)
## Reduce the dimensionality of this dataset
space <- reduce_dimensionality(dataset$expression, ndim = 2)
## Visualise the dataset
draw_trajectory_plot(space, progression_group = dataset$sample_info$group_name)